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Vortex matter in layered superconductors without Josephson coupling: Numerical simulations
within a mean-field approach
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We study vortex matter in layered superconductors in the limit of zero Josephson coupling. The long range
of the interaction between pancake vortices in thec direction allows us to employ a mean-field method: all
attractive interlayer interactions are reduced to an effective substrate potential, which pancakes experience in
addition to the same-layer pancake repulsion. We perform numerical simulations of this mean-field model
using two independent numerical implementations with different simulation methods~Monte Carlo sampling
and Langevin molecular dynamics!. The substrate potential is updated self-consistently from the averaged
pancake density. Depending on temperature, this potential converges to a periodic profile~crystal! or vanishes
~liquid!. We compute thermodynamic properties of the system, such as the melting line, the instability line of
the crystal, and the entropy jump across the melting transition. The simulation results are in good agreement
with approximate analytical calculations.
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I. INTRODUCTION

The vortex state in type-II superconductors is a comp
physical system. Within the layered high-temperature ma
rials, such as Bi2Sr2CaCu2O8 ~BSCCO! or YBa2Cu3O7
~YBCO!, vortex lines can be understood as wiggling stac
of pancake vortices.1–5 The thermodynamic properties of th
vortex state are determined by the interaction between p
cake vortices. There are two mechanisms of pancake in
action: ~i! electromagnetic interaction and~ii ! Josephson
coupling. The electromagnetic interaction is mediated by
percurrents circulating around each pancake, whereas th
sephson coupling results from the energy cost due to a p
shift between the superconducting order parameters in
neighboring layers.

To understand the phase diagram of high-temperature
perconductors and in particular the melting line of the vor
lattice,6,7 we need to gain insight into the behavior of vort
matter under a variety of experimental conditions. In mod
ately anisotropic materials, such as YBCO, the short-ra
Josephson coupling is the dominant interlayer interact
and the vortices are well described as elastic strings.8–13 In
very anisotropic materials, on the other hand, such
BSCCO, the Josephson coupling is weak, and the long-ra
electromagnetic interaction between the pancakes shoul
taken into account. In this paper we consider very ani
tropic materials in the absence of Josephson coupling
neglect pinning. Even after keeping only the electromagn
coupling, the problem remains challenging, due to the lo
range of the interactions: the energy of electromagnetic
0163-1829/2003/67~17!/174508~12!/$20.00 67 1745
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teraction between two pancakes depends logarithmically
the separation along the layers and decays exponentially
the number of layers between the pancakes. More spe
cally, the interaction is repulsive between pancakes in
same layer and attractive between pancakes in different
ers, and the decay length of the exponential dependenc
the London penetration depthl, which is typically 100 times
larger than the layer spacings. Approximately, this system
has been investigated within the density-function
theory.14–16

For a numerical investigation of the system, one can
principle simulate directly a stack of two-dimensional~2D!
pancake systems taking into account all of the interlayer
teractions. However, the computational challenge is that
interlayer attraction between pancakes extends over a ra
of 2l/s;1002150 layers. In addition, realistic simulatio
of the melting transition requires at least several hund
point vortices per layer. So far, direct numerical investig
tions have been performed only on small systems us
about 10 layers and of the order of 100 vortices.17–22This is
not sufficient to describe realistically the vortex state
BSCCO. With today’s computational resources, it is not fe
sible to perform realistic direct three-dimensional~3D! simu-
lations of this system because the necessary computat
effort grows quadratically with the number of layers.

Fortunately, one can benefit from the long range of
interlayer coupling. As the interlayer force on a pancake
the result of a sum of a large number (;2l/s) of small
contributions, it can be calculated by a mean-field approa
©2003 The American Physical Society08-1
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The exact value of this force is determined by the instan
neous pancake densities in the large number of layers. In
crystal state the instantaneous density can be decomp
into the average density, which is a periodic function of t
in-plane coordinates, and a fluctuating contribution. In
mean-field approach to the interlayer interactions, one
places the instantaneous densities in the other layers by
average density. This approach gives a quantitatively cor
description of the system, because due to the law of la
numbers, the neglected force from the fluctuating densitie
typically smaller than the average interlayer force by the f
tor ;As/l!1. The calculation then takes the form of ind
pendent layers, with the pancakes in each layer subject t
effective ‘‘substrate potential.’’23 This substrate potential i
the cumulative affect of the attraction of pancakes in all ot
layers as illustrated in Fig. 1. Pancakes within one layer
teract directly with each other, whereas the interaction w
pancakes in other layers is mediated via the substrate po
tial. Thus, each layer is treated individually, until a new su
strate potential can be computed. This process is itera
until the substrate has converged to a steady solution. In
paper, we present numerical implementations of this s
strate model and show results that we compare with
semianalytic approximations given in Ref. 23.

We summarize this work in Fig. 2. On the top, the cent
idea is visualized: pancakes experience attractive interla
interactions through the substrate potential that stabilizes
pancake crystal. On the bottom, we show the computed m
ing line separating a 3D pancake vortex lattice from dec
pled 2D liquids. We express magnetic induction in units
Bl[F0 /l2, whereF0 is the magnetic flux quantum, suc
that the pancake spacing in a triangular lattice isa0

5(2/A3)1/2l'1.07l at B5Bl . We use a dimensionles

FIG. 1. Schematic representation of the substrate model.~A!
The pancake positionsrn(x) in each layern are~B! averaged over
the layers in order to obtain the averaged pancake densityr(x).
From the average pancake density we compute~C! the substrate
potentialVMF(x), which is smeared over a length of the order ofl.
The vortex lattice spacing isa0 ands is the layer spacing.
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temperature,t, which is the ratio of the thermal energykBT
to the prefactor 2se0 of the logarithmic pancake-pancak
interaction,

t[
1

G
[

kBT

2e0s
, ~1!

where e05F0
2/(4pm0l2), m0 is the vacuum permeability

and s is the layer spacing. This allows us to compare o
results with outcomes from 2D one-component Coulo
plasma simulations,24–26 where frequentlyG51/t is used to
express temperatures. At low fields, the electromagnetic
traction of rangel@s between pancakes in different laye
stabilizes the 3D pancake-vortex lattice. Increasing the m
netic field decreases the relative strength of the interla
coupling. At high fields,B@Bl , the long-range repulsive
interaction within the layer dominates, and the 3D panca
lattice melts at a temperature close to the 2D melting te
perature.

In Sec. II we describe the substrate model in detail,
cluding three different methods for the efficient computati
of the substrate potential~Sec. II C!. The results, including
the equilibrium phase diagram, are shown in Sec. III bef
we conclude in Sec. IV. The Appendix gives a derivation
the correlation correction to the free energy, and shows
our mean-field approach should be accurate to orders/l.

FIG. 2. Top: Snapshot of the pancakes~visualized by spheres!
placed onto the substrate potential~visualized as a surface! at B
5Bl and t51/59'0.017 just below the melting transition to dem
onstrate how the substrate potential constrains the pancake mo
Bottom: The phase diagram we have computed using the subs
method.
8-2
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II. MEAN-FIELD APPROACH „SUBSTRATE MODEL …

A. The mean-field interlayer coupling

The in-layer energyE in and the interlayer energyE inter of
a system of electromagnetically interacting pancakes i
layered superconductor are, respectively,

E in5(
n

En
in5(

n

1

2 (
j 8Þ j

U~Rj
n2Rj 8

n ,0! ~2!

and

E inter5
1

2 (
n8Þn

(
j , j 8

U~Rj
n2Rj 8

n8 ,n2n8!. ~3!

Indicesn and n8 count over layers andj and j 8 over pan-
cakes in the layers,Rj

n is the ~2D! position of pancakej in
layern, andU(R,n) is the coupling energy for two pancake
separated by a vector (R,z), wherez5ns, with s being the
layer spacing. Thez axis is chosen perpendicular to th
layers.

The in-layer pancake interaction4 is

U~r ,0!52e0sF S 12
s

2l D lnS L

r D1
s

2lEr

`

dr8
exp~2r 8/l!

r 8
G

~4!

and the interlayer interaction (nÞ0) is

U~r ,n!52
e0s2

l FexpS 2
ns

l D lnS L

r D
2E

r

`

dr8
exp@2Ar 821~ns!2/l#

r 8
G . ~5!

Using

rn~r !5(
j

d~r2Rj
n!, ~6!

we rewrite

E inter5
1

2 (
nÞn8

E d2rd2r 8rn~r !rn8~r 8!U~r2r 8,n2n8!.

~7!

We separate pancake density fluctuations from the layer
erage density

r~r ![^rn~r !&, ~8!

rn~r !5r~r !1drn~r !, ~9!

and obtain from Eq.~7!

E inter5
1

2 (
nÞn8

E d2r d2r 8U~r2r 8,n2n8!

3@r~r !r~r 8!12r~r 8!drn~r !1drn~r !drn8~r 8!#.

~10!
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Because the differencen2n8 in the last sum extends over
very large number of layers (;l/s), a typical value of the
sum(n8U(r2r 8,n2n8)2r(r 8) is larger than a typical value
of the sum(n8U(r2r 8,n2n8)drn8 by the factor;Al/s.
Again, the law of large numbers allows us to neglect the l
term in Eq.~10!, leading to the mean-field description of th
interlayer interactions. A more precise justification is giv
in the Appendix, where the free-energy correction due to
correlation term is shown to be smaller than the mean-fi
free energy by the factors/l.

Separating the pancake density into the average valur
5^rn(r )& and a modulating part, we can split the total ma
netic coupling energy into two parts, each with a quite d
ferent meaning. The part containing the average density d
not depend on temperature and formally diverges due to
logarithmic term in Eq.~5!. This divergence exactly compen
sates a similar divergence in the in-plane energy. Within
mean-field approach the part of the coupling energy sens
to density variations is finite only in the crystal state. In t
liquid state it vanishes.

For the mean-field interlayer energyE MF we obtain from
Eq. ~10!

E MF5(
n

En
MF

5
1

2 (
nÞn8

E d2r d2r 8U~r2r 8,n2n8!

3@r~r !r~r 8!12r~r 8!drn~r !# ~11!

5
1

2 (
n
E d2rVMF~r !r~r !1(

n
E d2rVMF~r !drn~r !

~12!

52
1

2 (
n
E d2rVMF~r !r~r !

1(
n
E d2rVMF~r !rn~r ! via Eq. ~9!. ~13!

The last term describes fluctuations in the fixed subst
potentialVMF ,

VMF~r !5E d2r 8F (
nÞ0

U~r2r 8,n!Gr~r 8! ~14!

5E d2r 8U~r2r 8!r~r 8! ~15!

[~U * r!~r !, ~16!

where* is the convolution operator and

U~r ![ (
nÞ0

U~r ,n!. ~17!

U(r ) is the interaction potential of a pancake separated br
from a stack of pancakes minus the interaction of the~miss-
ing! pancake in the same layer and is given by4
8-3
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U~r !52e0sK0S r

l D2U~r ,0!, ~18!

with K0(x) being a modified Bessel function of the seco
kind. Ignoring terms of the order ofs/2l, the pancake-
pancake repulsion~4! simplifies to

U~r ,0!52e0s lnS L

r D . ~19!

In our calculations we find it useful to use the form in Fo
rier space,27

U~q!54pe0sS 1

l221q2
2

1

q2D ~20!

524pe0s
l22

q2~l221q2!
. ~21!

B. Algorithm

In principle, the substrate model can be implemented
follows:

~1! Assume initial pancake densitiesrn(r ), for example, a
hexagonal lattice in each layern.

~2! Average the pancake densityrn(r ) over all layers to
obtainr(r ), Eq. ~8!.

~3! Compute the substrate potentialVMF(r ), Eq. ~16!, by
convoluting the substrate interaction kernelU(r ), Eq. ~18!,
with the average pancake densityr(r ):

VMF~r !5~U* r!~r !. ~22!

~4! For each layern compute the pancake distributio
rn(r ) using Monte Carlo or Langevin dynamics simulation
The total energy for layern contains the direct pancake
pancake interaction within the layer@Eq. ~2!#

En
in5

1

2 (
j 8Þ j

U~Rj
n2Rj 8

n ,0!, ~23!

and the relevant interaction with pancakes in other layers
the substrate potential~13!

En
MF52

1

2E d2rVMF~r !r~r !1E d2rVMF~r !rn~r !

52Ecoup1(
j

VMF~Rj
n! via Eq. ~6!. ~24!

Ecoup5 1
2 *d2rVMF(r )r(r ) is constant for a givenr(r ) and

can therefore be ignored within the Monte Carlo a
Langevin simulation as it only shifts the energy scale.

~5! Go to ~2!, until VMF ~or r) has converged.
Since the substrate potentialVMF in step~4! is the same

for all layers, we can computern(r ) for many Langevin-
dynamics time steps~or Monte Carlo sweeps! rather than
many layers. Therefore, in order to obtain the averaged p
cake densityr(r ) in step~2!, we average over time steps~or
sweeps! computed in one layer rather than averaging o
17450
s
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layers. Using the substrate potential, we reduce the solu
of the 3D problem to performing one 2D simulation in th
presence of the iteratively refined substrate potential.

C. Numerical implementation

We exploit the convolution theorem and compute the s
strate potential in Fourier space27

VMF~r !5~U* r!~r ! via Eq. ~16! ~25!

5E d2q

~2p!2
U~q!r~q!exp~ iq•r ! ~26!

using the analytical Fourier transformU(q) as given in Eq.
~21!, and the numerically computed

r~q!5E d2rr~r !exp~2 iq•r !. ~27!

This has two advantages: First, we do not cut off the int
action kernelU within the simulation cell as would be th
case in the real-space convolution. Second, this is num
cally more efficient than performing the convolution~15!
directly. We have used three different methods for comput
VMF(r ) numerically.

1. The full method

The ‘‘full method’’ computes the substrate potentialVMF
using the full spectrumr(q) of Fourier components of the
average pancake densityr(r ) as shown in Eq.~26!. In our
simulations we use a resolution of'1002 grid cells per pan-
cake in order to computer(r ) as an average over time step
or sweeps. This results in reciprocal lattice vectors up
magnitudes of'100Q0, where Q054p/(A3a0), because
uQmaxu/Q0'2p/(DxQ0)'a0/Dx'100. The necessary dis
crete Fourier transform ofr(r ) and the inverse transform o
VMF(q)5U(q)r(q) can be done efficiently using an imple
mentation of the fast Fourier transform.28

We precompute the substrate potentialVMF(r ) on a mesh
and interpolate subsequently for intermediate pancake p
tions while performing Langevin dynamics in the fixed su
strate. We compute a new substrate every 200 000 time s
It is important to average over so many time steps to red
density fluctuations~due to poor statistics! in the pancake
histogram, which would result in a deformed substrate
tential. Note thatr(r ) and r(q) are discretized out of nu
merical necessity to compute a histogram but not for conc
tual reasons.

2. The Fourier-filtered method

The average densityr(r ) should be a periodic function
which can be represented by a discrete set of Fourier c
ponents. Therefore, the second method uses only a subseQm
of the Fourier componentsq to representr(q),

rFF~q!5~2p!2(
m

rQm
d2~q2Qm!, ~28!
8-4
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which we determine from the maxima of the structure fac
and

rQ5K 1

LxLy
(

j
exp~2 iRj

c
•Q!L

c

, ~29!

with LxLy being the area of the simulation cell. We avera
over a set of configurationsc of pancake positionsRj

c ~either
sweeps or time steps! to computerQ .

Using rFF(r )5(2p)22*d2qrFF(q)exp(iq • r ) to present
r(r ), we Fourier-filter~FF! r(r ), and keep only the relevan
components for the computation of the periodic substr
We can write

VMF
FF ~r !5E d2q

~2p!2
U~q!rFF~q!exp~ iq•r ! via Eq. ~26!

~30!

5(
m

U~Qm!rQm
exp~ iQm•r ! via Eq. ~28!

~31!

524pe0s(
m

rQm
exp~ iQm•r !

Qm
2 ~11l2Qm

2 !
via Eq. ~21!.

~32!

This is equivalent to using the full method, but setti
r(Q)50 if Q¹$Qm%.

The advantage of the Fourier-filtered method is that
need to average over less iterations before we can comp
new pancake density and subsequently a new substrate
cause the substrate is periodic per construction. Using
Fourier-filtered method we use 500 time steps or sweeps
each substrate iteration.

It turns out that it is not necessary to take the average~29!
over different configurations, but it is sufficient to use ju
one configuration~i.e., one time step or sweep!:

rQ5
1

LxLy
(

j
exp~2 iRj•Q!. ~33!

Nevertheless, we run a simulation for 500 time steps
sweeps with the same fixed substrate potential to reduce
computation ofrQ , and to give the pancakes some time
experience the system with a new substrate potential.

3. The small-harmonics (Fourier-filtered) approximation

In addition to Fourier-filteringr(r ) we can speed up th
computation further because close to the melting temp
ture, rQm

decays quickly for higher-orderQm due to the

Debye-Waller factor. We can estimate the reduction ofrQ
due to the Debye-Waller factor

expS 2
^u2&Q2

4 D5expS 2
1

4

^u2&

a0
2

16p2Q2

Q0
2 D , ~34!

whereQ054p/(A3a0) and ^u2& is the mean-squared fluc
tuation displacement. Depending on^u2& we can ignore all
17450
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r(Qm) with uQmu.Q8. For all but the smallest fields, w
find close to the melting transition̂u2&/a0

2'0.0220.03~see
Sec. III E!, and it is sufficient to include vectors up to thir
orderQm in the summation in Eq.~32! as shown in Fig. 3.

For the small-harmonics Fourier-filtered method it is mo
efficient to evaluate Eq.~32! for each pancake position oc
curring in the Langevin–Monte Carlo simulation rather th
pre-computingVMF on a mesh. We demonstrate the equiv
lence of the full and the Fourier-filtered method for the d
termination of the instability line in Sec. III A, and we com
pare with the small-harmonics Fourier-filtered method
Sec. III C.

D. Monte Carlo and Langevin dynamics simulations

We have two independent implementations of the sm
harmonics Fourier-filtered method: One of us~A.E.K.! has
written a Monte Carlo simulation that is based on ene
evaluations, and another~H.F.! has implemented a Langevi
dynamics simulation based on force calculations. The res
of both implementations agree perfectly.

We follow standard vortex-state simulatio
techniques,29,30 including periodic boundary conditions fo
the in-plane interactions. We use a smooth cutoff for
vortex in-plane interactions.29,31 For the Langevin dynamics
simulations, we compute the substrate forces numeric
from the precomputed mesh~Sec. II C 1! for the full method
and the Fourier-filtered method. For the small-harmon
Fourier-filtered method we use the analytical derivative
Eq. ~32!. The Monte Carlo simulations were only imple
mented with the small-harmonics method. If not stated o
erwise we use a system with 1020 pancakes. The Mo
Carlo method is more efficient in converging to a stea
solution, whereas the Langevin method allows a general
tion of the model to study dynamic properties.

III. RESULTS

A. Time convergence of the substrate potential

As described in Sec. II B, we start each run with a he
agonal pancake distribution corresponding to zero temp
ture. Figure 4 shows results for the Fourier-filtered method

FIG. 3. Set ofQm vectors up to third order~i.e., three ‘‘shells’’
around the origin! in reciprocal space used in the small-harmon
Fourier-filtered method to computerQm

. Due to the reality ofr(r )

we haver(q)5 r̄(2q), and it is therefore sufficient to comput
only half of the 36 coefficientsrQm

.

8-5
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B5Bl and at a temperaturet51/59'0.017. The top plot
shows a one-dimensional slice of the 2D pancake histog
n(x,y0) taken alongx at y5y0. The histogram relates to th
pancake density vian(x,y)5r(x,y)DxDy, whereDx and
Dy are the spacings of the grid used to create the histogr
For the zeroth substrate iteration we set the histogram
have narrow and high peaks at the pancake equilibrium
sitions corresponding tod peaks in a zero-temperature pa
cake densityr(r ). Based on this initial pancake distributio
we compute the substrate potential,VMF(r ), for the first sub-
strate iteration, of which a one-dimensional slice aty5y0 is
shown in the lower part of Fig. 4. Using this substrate p
tential, we run the Langevin dynamics simulation f
200 000 steps. We compute the pancake histogram for it
tion 1 ~see upper plot of Fig. 4! based on the pancake pos
tions in these 200 000 Langevin time steps. From the p
cake histogram of iteration 1, we compute the substr
potential for iteration 2. This cycle of calculating a new pa
cake histogram in the presence of a substrate potential,
subsequently computing a new substrate, is repeated unt

FIG. 4. Convergence to pancake lattice atB5Bl and t51/59
'0.017. Top: pancake histogramn(x,y0) taken alongy5y0. Bot-
tom: substrate potentialVMF(x,y0). For each iteration, 200 000
Langevin time steps were used to compute the new pancake h
gram and subsequently the new substrate potential.

FIG. 5. Convergence to pancake liquid. As in Fig. 4 but at
51/5050.02 above the melting temperature atB5Bl .
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substrate potential has reached a steady state~after typically
less than 10 of these substrate iterations!. Figure 4 demon-
strates that the system converges quickly to a pancake s
at this temperature below melting.

The dotted line in the lower part of Fig. 4 shows a com
parison substrate potential for iteration 10 computed us
the full method. While the amplitude and width of the we
~and thus the resulting force! are virtually identical to the
Fourier-filtered data, the magnitude of the substrate from
full method varies slightly. This is due to~long-wavelength!
density fluctuations in the histogram data and reduces fur
if one uses more time steps for each substrate iteration.

Figure 5 shows data forB5Bl and a higher temperatur
t51/5050.02 that is above the melting temperature. He
the pancake distribution broadens and consequently the
strate potential flattens quickly within the first few substra
iterations. Eventually, the system has become a disord
liquid with a local pancake density that is approximate
constant and the substrate is virtually flat, as shown for ite
tion 10. We conclude that for this temperature and magn
field the pancake lattice is unstable against melting int
pancake liquid.

For Figs. 4 and 5 we have used 200 000 Langevin ti
steps for each substrate iteration in order to be able to c
pare the full and the Fourier-filtered methods, but it would
sufficient to use much less time steps per substrate itera
for the Fourier-filtered methods. For production purposes,
use the small-harmonics Fourier-filtered method and upd
the substrate every 500 time steps~Sec. II C 2!. Although
more substrate iterations than with the full method are
quired before the system reaches a steady state, the s
harmonics Fourier-filtered approach is more efficient. T
full method and both Fourier-filtered methods find that atB
5Bl the pancake lattice becomes unstable for 0.017<t
<0.018.

Figure 6 shows how the instability temperature varies a
function of system size. For small numbers of vortices,Np ,
the temperature oscillates slightly and for larger system
becomes constant. Most importantly, there is no gen
trend visible although the data range fromNp590 to Np
51512. This insensitivity to the system size demonstra
the local nature of the melting transition at this field.

B. Hysteresis loop

Rather than starting from a hexagonal crystal for ev
temperature, a better approach to determine the instab

to-

FIG. 6. Finite-size investigation of instability temperature atB
50.4Bl .
8-6
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FIG. 7. Example of a hysteresis loop obtained by heating a crystal~circles! and cooling a liquid~squares! for B50.4Bl . Each point was
equilibrated for 93105 Monte Carlo steps. The crystal melts att50.027, while the liquid freezes att50.0247. Rhombs represent resu
obtained by simulations starting from the same intermediate defective configuration withndef'0.2. This configuration melts att50.0262,
which we take as an estimate for the thermodynamic melting temperature. The insets show dependencies of the defect concentra
Monte Carlo step at the temperatures where the intermediate configuration melts and the liquid configuration freezes. See also R
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temperature is to subsequently increaset until the system
melts. We also find that by starting from a liquid configur
tion and loweringt, the system jumps into the crystal state
a certain freezing temperature. We expect the true mel
temperature to lie within the instability and the freezing te
perature. Such a hysteretic run is shown in Fig. 7.

In order to estimate the thermodynamic melting tempe
ture at which the free energy of the solid and the liquid ph
cross, we proceed as follows. First, we store a vortex c
figuration taken from 2D melting-transition simulations. W
chose a configuration from a time-step or sweep where
system was previously a solid but just starts melting, i.e.,
defect density starts increasing up and the structure fa
peaks start decaying. This vortex configuration is ‘‘interm
diate’’ between a solid and a liquid. Second, we start
computation from this intermediate configuration~IC! for ev-
ery temperature. The results for the IC simulations are sho
in Fig. 7 ~rhombs!. We use the temperature at which the
melts as a best approximation to the melting temperatur
the physical 3D pancake-vortex lattice.

C. Temperature dependence of substrate curvature and
pancake fluctuation width

We can quantify the strength of the substrate poten
with

as5
1

Np
(

j

]2

]x2
VMF~Rj2Rj

0!. ~35!

This is the curvature of the potential evaluated at deviati
Rj2Rj

0 from the equilibrium lattice positionsRj
0 and aver-

aged over pancake positionsRj . The second derivative ca
be taken analytically from Eq.~32!.

Figure 8 shows in the upper plot howas varies with tem-
perature. The solid line is an analytical prediction from tre
ing the substrate softening due to thermal fluctuations wit
the self-consistent harmonic approximation~SCHA!.23 All
other data are simulation results from the Fourier-filte
method. The stars showas computed using the small
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harmonics Fourier-filtered method withQm vectors up to
20th order. For low temperatures the data nearly coinc
with the SCHA-solution. Close to melting the SCHAas is
larger than the numerical result. Therefore the simulatio
give a softer substrate and the lattice has larger thermal
placements. This difference could be due to the inadequa
of the SCHA, which does not include the thermal softeni
of the 2D lattice. The more complex two-vertex se
consistent harmonic approximation~2VSCHA! does include
these effects.23 The circles in Fig. 8 show results usingQm
vectors up to third order, as shown in Fig. 3. Close to
transition from solid to liquid aroundt'0.0175 these data

FIG. 8. Top: The substrate curvatureas at B5Bl . Shown is our
numerical solution of the Fourier-filtered method usingQ vectors
up to 20th order~stars!, and using up to third order~circles!. We
have also shown results forQmax53Q0 using an infinite lattice
summation for the in-layer interaction~squares!. Bottom: The pan-
cake fluctuation widtĥ u2& ~stars!. For comparison, we also show
the results of a simple SCHA calculation~Ref. 23! ~solid line! of the
softening of the substrate potential~not including thermal softening
effects of the 2D lattice!. The results are close to our numerical da
at low temperatures, but as the melting point is approached ther
extra ~anharmonic! fluctuations in the simulation data for^u2&, re-
sulting in an even softer substrate potentialas.
8-7
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agree perfectly with the higher-order data. At lower tempe
tures the third-order results deviate from the 20th order
causê u2& becomes smaller in the Debye-Waller factor~34!.
However, as long as we are interested in temperatures c
to the transition, the third-order approach is sufficient.

The square boxes are computed using the third-order
proach, but instead of smoothly reducing the panc
interaction31 at a distance of'7a0, we use an infinite lattice
summation technique for the logarithmic interaction.33 This
demonstrates that it is sufficient to use a~smooth! cutoff for
the in-layer pancake interactions.

We compute the average pancake fluctuation width^u2&
by fitting to a distribution where each pancake is norma
smeared around its equilibrium positionRj

0 :

r~r !5
1

2ps2 (
j

expS 2
ur2Rj

0u2

2s2 D . ~36!

The Fourier transform ofr(r ) is

r~q!5expS 2s2q2

2 D(
j

exp~2 iq•Rj
0!

5~2p!2n0 expS 2s2q2

2 D(
m

d2~q2Qm!.

The Fourier componentsr(Qm) have the Debye-Waller fac
tor as an envelope, and by fitting a Gaussian to it, we
determinê u2&52s2.

The lower part of Fig. 8 shows computed values for^u2&.
We expresŝu2& in units ofa0

2 and it increases from 0 at zer
temperature towards 0.028 close to the transition, which
responds to a Lindemann number of'0.168 atB5Bl . In
agreement with an overestimation ofas by the SCHA,^u2&
is underestimated in comparison with numerical results cl
to the melting transition.

D. Phase diagram

As demonstrated in Sec. III A, we can determine for ea
parameter pair (B,T) whether the pancake system remain
3D pancake lattice, or whether it is unstable towards
liquid phase that consists of decoupled 2D liquids.~This is
sometimes called a pancake gas, even though there are
very strong in-plane correlations in the decoupled layers
the absence of Josephson coupling, a linelike liquid regim
expected only at extremely small magnetic fields.34!

We probe parameter space in theB-T plane as described
in Sec. III A and compute an instability line for the pha
diagram of the system, which is shown in Fig. 9~circles on
dashed line!. We also show an estimate of the instability lin
that has been computed using the two-vertex self-consis
harmonic approximation~2VSCHA, dash-dotted line! for the
substrate model.23,35 Since in this work we explicitly com-
pute the pancake positions without using approximati
~within the substrate model!, we expect our result to be mor
accurate than the 2VSCHA. It can be seen that the 2VSC
slightly overestimates the temperature for the instability li
17450
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Our numerical estimates for the melting points at cert
fields~see Sec. III B! are shown as the crosses in Fig. 9. Al
shown as the solid line is the melting line calculated se
analytically in Ref. 23. In this work the melting temperatu
was estimated by comparing approximate free energieF
5U2TS for the solid and liquid phases. The solid free e
ergy was calculated from the SCHA, which gives a var
tional upper bound on the free energy. The liquid free ene
was taken from earlier simulations of a single layer,25 i.e., it
was assumed that the layers are completely uncoupled in
liquid state. Remarkably, our melting points from simul
tions lie on top of the semianalytic line~to within our error
bars!.

For increasing fieldsB, the substrate becomes weaker a
weaker and the melting temperature drops. In the limit
B→` we recover a 2D system with logarithmic interactio
for which melting has been estimated24–26 to occur atGm

2d

'140610⇔tm
2d'0.007, which is consistent with our result

At low fields the pancake stacks are widely separated
interact only weakly with each other. In this limit the syste
melts below the evaporation transition of an isolated stack
pancakes4,36 at G54⇔t50.25. In agreement with this, we
find that the instability line approachest'0.25 for B→0
~see Fig. 2!.

E. Latent heat and jump in entropy

We compute the latent heat per pancake,Lp , by taking the
difference of internal energy between the solid and the liq
phase at the melting temperatureTm,

Lp5
1

Np
~U liquid2Usolid! ~37!

5
1

Np
@Eliquid

in 2~Esolid
in 1Ecoup!#. ~38!

FIG. 9. Phase diagram of the electromagnetically coupled
pancake system. Numerically computed instability line~black
circles on dashed line! in comparison with the instability line from
the 2VSCHA~dash-dotted line!. Also shown is an semianalytica
estimate for the melting line from Ref. 23, to be compared with o
numerical estimatet IC ~crosses!. We have shaded the solid phas
underneath the melting in gray. The melting temperaturetm

2d

50.007 of a 2D system is shown by a dotted line.
8-8
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The internal energyU of one layer in the solid phase consis
of the in-plane energyEin @Eq. ~23!# and the interlayer cou
pling energyEcoup, whereasEcoup50 in the liquid phase in
our model. In order to computeEcoup for the solid phase, we
use Eq.~12!, where the second sum vanishes due to the d
nition of drn :

Ecoup5
1

2E d2rVMF~r !@r~r !2 r̄ #, ~39!

wherer̄5F0 /B is the mean density. For the Fourier-filtere
methods,

Ecoup5
1

2Ed2r (
mÞ0

U~Qm!rQm
exp~ iQm•r !r~r !

via Eq. ~31!

5
1

2
LxLy (

mÞ0
U~Qm!urQm

u2 via Eq. ~27!.

~40!

For the full method, we haver(r ) as a histogram, and w
can integrate Eq.~39! numerically.

The top plot of Fig. 10 shows how the latent heat varies
a function of field. We have shown the jump in interlay
coupling energy normalized by the latent heat in the bott
part to demonstrate the contribution of the interlayer c
pling to the latent heat. This plot shows that the substr
contribution to the latent heat dominates at low fields a
becomes less and less important towards high fields.

Figure 11 shows the entropy jump across the transit
DSp[Lp /Tm, as a function of field. We find thatDSp mono-
tonically decreases with increasing field as the system
proaches the 2D regime. An important issue is the crosso
to the 2D melting regime at very largeB. Two melting sce-
narios are possible in two dimensions: a usual first-or
melting and continuous dislocation-mediated melting via
intermediate hexatic phase.37,38 In the first caseDSp has to
approach a finite value atB→` and in the second case
should vanish. Early simulations for a relatively small nu
ber (&500) of logarithmically interacting particles suggest

FIG. 10. Top: Latent heatLp per pancake across the meltin
transition as a function of field. The inset shows the same data
reduced scale. Bottom: Jump in interlayer coupling ener
DUcoup5Ecoup, normalized by latent heat.
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a first-order phase transition.25,24,26However, it is known that
to resolve a continuous melting transition in two dimensio
very large systems are required~see, e.g., Ref. 39!. There-
fore, the nature of the melting transition of 2D particles w
logarithmic interactions is an open issue. Resolving this is
is beyond the scope of this paper.

At low fields the entropy weakly diverges forB→0. We
understand this as follows: the possible configurations s
as ;A/j2, wherej2 is the size of a pancake, andA is the
space it can occupy. For the solid state close to the trans
the reduced configuration space is;^u2&/j2, because the
pancake is confined to an areaA;^u2&. In the liquid the
reduced configuration space grows to;a0

2/j2, wherea0 is
the average spacing between pancakes. We thus get a
tropy differenceDSp; ln(a0

2/^u2&). Since^u2& approaches
at low fields a finite field-independent value of the order
l2, this explains the observed divergence ofDSp at B→0.
For a precise comparison with the experimentally extrac
latent heat of vortex-lattice melting6 one should be careful to
include the temperature dependence ofl, which was shown
in Ref. 40 to give extra terms in the observable entro
jump.

IV. CONCLUSIONS

In this work we have applied a numerical simulation
the suggestion of Ref. 23 to treat the 3D layered panc
system with a mean-field approach for the interlayer inter
tions, turning the problem into a 2D system in the prese
of a self-consistent substrate potential. In Ref. 23 this s
strate model was studied with semianalytic methods. T
two-vertex self-consistent harmonic approximation was u
to estimate the instability line of the pancake lattice. Also t
melting line was estimated by comparing the elastic free
ergy of the lattice within the substrate model to the fr
energy of independent 2D liquids, taken from numeric
simulations.

Here we have presented results from full numerical sim
lations of the substrate model. We have directly calcula
both the instability and melting lines. Our result for the i
stability line has a very similar field dependence to that

a
,

FIG. 11. Entropy jumpDSp per pancake as a function of fieldB.
Inset: Pancake fluctuation widtĥu2& normalized toa0

2 at the melt-
ing point ~the Lindemann number squared!.
8-9
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the 2VSCHA, which we find to slightly overestimate th
instability temperature. The melting line from the semian
lytic approach agrees within error bars to our simulation
sults for the melting of an intermediate configuration. W
have computed the pancake fluctuation width^u2& and
showed how it varies as a function of temperature: the va
tion is significantly nonlinear below the melting transition,
predicted in Ref. 23. We also calculate the entropy ju
across the melting transition, which diverges weakly towa
small fields and large melting temperatures.

With such good agreement between the melting line fou
here and that calculated with the semianalytic method in R
23, it is worth pointing out the value of the simulations w
have presented. In the semianalytic method, the estimate
the melting temperature was based on a comparison of
free energies of the liquid and crystal. Both free energ
were approximate and the accuracy of each approxima
was not strictly checked. The free energy of the crystal w
calculated using only the first fluctuation correction in whi
the magnetic tilt stiffness was evaluated self-consisten
The liquid free energy was obtained by integration of t
numerically calculated energy down from the very high te
perature at which an analytical result is known~the accuracy
therefore relies on a small error in the numerically calcula
energy compared to the strength of its temperature de
dence!. The fact that we find good agreement in the melti
line between semianalytic results and simulations sugg
that both free-energy approximations in Ref. 23 do not h
large inaccuracies, which was not obvious by itself. Fina
we note that even though there is agreement in position
the melting line, simulations suggest that the analytical
proach for the crystal always underestimates the strengt
fluctuations at the melting point~see Fig. 8!.

While we have found a satisfying agreement between
results here and the earlier approximate work of Ref. 23,
true motivation of this project is the possible extensions t
can be studied. There is now the exciting prospect to st
this pancake vortex system in the presence of pinning di
der. This has been a controversial topic in recent years41–44to
which our method should bring some clarity. The effect
random pointlike pinning can be simulated by adding~along
with the substrate potential! a random pinning potential to
the simulation. If the Fourier-filtered method is used to co
pute the substrate potential, then the substrate will refl
disorder-induced random vortex displacements, wh
weaken it while still being periodic. This should adequate
represent uncorrelated random pinning in a many-layer
tem because, due to the long-range nature of magnetic
pling, the disorder-induced layer-to-layer density variatio
will average out in the magnetic interaction. Note that it
the same averaging that we take advantage of for ther
density fluctuations in the present work.

Our results cannot be directly compared with experime
in available layered superconductors because even in
most anisotropic BSCCO the Josephson coupling energ
not negligible. However, the position of the melting lin
without the Josephson coupling provides a convenient re
ence, allowing one to understand the role of the Joseph
energy. In particular, it seems that even a very small Jose
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son coupling such as in BSCCO gives a large upward shif
the melting field because the extra coupling increases
stability of the 3D pancake lattice. For example, the melt
field in the optimally doped BSCCO atT550 K is found to
be around 300 G~see, e.g., Ref. 6!. If we assumel(50 K)
'210 nm, then our calculations suggest that the melt
field without Josephson coupling would be at this tempe
ture around 95 G, i.e., about three times smaller. In addit
the liquid phase may have considerable correlations fr
layer to layer that are not present in the absence of Josep
coupling. We also note that it is possible to suppress
effective Josephson coupling by applying a strong in-pla
field, as was done in Ref. 45, bringing the melting line clos
to the ‘‘Josephson-free’’ location. By extending the model
use several layers, it is possible to include Josephson
pling between them, which would realistically describe
anisotropic layered high-temperature superconductor.
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APPENDIX: CORRELATION CORRECTION TO FREE
ENERGY

The correlation correction to the pancake energy,
glected within the mean-field approach, is given by

dE5
1

2 (
nÞn8

E d2rd2r 8U~r2r 8,n2n8!drn~r !drn8~r 8!.

~A1!

The correction to the free energy due to this term is given
to second order by

dF'^dE&02
^dE 2&02^dE&0

2

2T
,

where^•••&0 implies mean-field averaging. Substituting E
~A1! in the last equation and noting that^dE&050, we derive
for the free-energy correction per pancake,d f
[a2dF/(LxLyN),

d f '2
a2

4TLxLy
(
nÞ0

E d2rd2r 8E d2r 1d2r 18U~r2r 8,n!

3U~r12r18 ,n!^dr~r !dr~r1!&0^dr~r 8!dr~r18!&0 ,

whereN is the total number of layers,LxLy is the layer area,
and^dr(r )dr(r1)&0[^drn(r )drn(r1)&0 is the density corre-
lation function inside one layer. In the next step we introdu
notation for the sum

W~r ,r1![ (
nÞ0

U~r ,n!U~r1 ,n!,
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for which, using the mixed representation for the interlay
magnetic interaction,

U~k' ,n!52
2ps2«0

l2k'
2

exp~2nsAl221k'
2 !

Al221k'
2

,

we obtain the formula

W~r ,r1!

5
s3«0

2

2p2l
E d2kd2k1

3
exp~ ik•r1 ik1•r1!

k2k1
2A11l2k2A11l2k1

2~A11l2k21A11l2k1
2!

,

allowing us to representW(r ,r1) in a scaling form

W~r ,r1!5
s3«0

2

l
w~r /l,r1 /l!.

By also using a scaling representation for the in-pla
density correlation function, ^dr(r )dr(r1)&0
5(1/a4)h(r /a,r1 /a), we derive the scaling representatio
for the free-energy correction

d f 52s«0

s«0

4T

s

l
GFa

l
,
2s«0

T G ~A2!
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